
Journal of Computer Science 6 (3): 296-304, 2010 
ISSN 1549-3636 
© 2010 Science Publications 

Corresponding Author: Sami M. Halawani, Faculty of Computing and Information Technology in Rabigh, 
 King Abdulaziz University, P.O. Box 344, Rabigh 21911, Saudi Arabia 

296 

 
Memory Storage Issues of Temporal Database Applications on 

Relational Database Management Systems 
 

Sami M. Halawani and Nashwan A. Al-Romema 
Faculty of Computing and Information Technology in Rabigh, 

King Abdulaziz University, P.O. Box 344, Rabigh 21911, Saudi Arabia 
 

 Abstract: Problem statement: Many existing database applications manage time-varying data. These 
database applications are referred to as temporal databases or time-oriented database applications that 
are considered as repositories of time-dependent data. Many proposals have been introduced for 
developing time-oriented database applications, some of which suggest building support for Temporal 
Database Management Systems (TDBMS) on top of existing non-temporal DBMSs, while others 
suggest modifying the models of exiting DBMSs or building TDBMS from scratch. Approach: This 
study addressed several issues concerning developing a technique that enables database designers to 
understand the way in which time-varying behavior can be modeled and mapped into tabular form. 
Results: Conventional DBMSs do not have the capability to record and process time-varying aspects 
of the real world. With growing sophistication of DBMS applications, the lack of temporal support in 
conventional DBMS raises serious problems when used to develop temporal database. The technique 
of understanding how to think about time and represent it in formal systems is the topic of this study. 
We examined how to implement time-varying application in the SQL structured query language by 
introducing temporal data concepts that need to be simulated in DBMSs which lack temporal supports. 
We proposed a temporal data model that combines the features of previous temporal models and that 
reduces the cost of memory storage. Conclusion: We proposed a technique for implementing temporal 
database on top of exiting non-temporal DBMS. This technique includes five main areas. These areas 
are temporal database conceptual design, temporal database logical design, integrity constraints 
preventions in temporal database, modifying and querying temporal database. We proposed a data 
model for the temporal database based on the data models which are discussed in literature. 
 
Key words: Temporal database, temporal database models, time-oriented database, valid-time data 

model, transaction time data model, bitemporal data model 
 

INTRODUCTION 
 
 Database Management Systems (DBMS) are 
supposed to model and record part of the real-world in a 
well-defined format. The stored data helps many 
organizations to make important business decisions. 
Conventional DBMS is used to store and to process the 
data which refer to the information that is valid at the 
current time. Temporal database is a modeling 
technique in database technology that deals with storing 
time related data (Kostenko, 2007). This modeling 
technique offers temporal data types and stores 
information related to the past, the present and to the 
future. This modeling technique provides expressive 
and efficient ways to model, store and query different 
time-state of the stored data. 

Time model: Time is represented in the real-world as a 
line where each point in the line is called an instance 
and the time between two instances is called period, the 
length or unanchored segment of time-line is an 
interval. 
 Instant of time, period and interval in temporal 
database are known as temporal data type (Snodgrass, 
2000). 
 Views of time can be considered as:  
 
• A continuous time model, which is considered to 

be similar to represent time with real numbers and 
new time point can be defined between two 
existing time points. As a result, we have an 
infinite set of time points 

• A discrete time model in which time is viewed as 
natural numbers (integer numbers) 



J. Computer Sci., 6 (3): 296-304, 2010 
 

297 

 There is a concept of some atomic unit of time, 
known as a chronon (Patel, 2003). The chronon is the 
shortest duration of time which is non-decomposable 
unit of time; it cannot be further divided or broken to 
generate new time points. Chronon used to build all 
units of discrete time. 
 Conceptually, since time may extend to the infinite 
future of infinite past, so adding some aspect of time 
into the relational database model should be bounded to 
indicate the assigned time. In the time line the time is 
read as time line clock termed as time-line chronons. 
Every tick of the clock represents a time instance. The 
calendars relate times on the time line clock to be more 
familiar in temporal description. For example, the 
Gregorian calendar defined the time line clock chronon 
as day, month and year, for example, “22nd of June 
2008”, this time point known as granules and the 
partitioning schema that partitioned the time line into 
finite set of time segment known as granularity, which 
is a common feature of all temporal data (Snodgrass, 
2000). 
 The discrete time model is considered as the time 
model for representing temporal database because of 
the simplicity and relative ease of implementation. If a 
continuous time model were used to represent time in a 
temporal database, there would be many problems in 
providing arithmetic support since there is an infinite 
precision of time (Patel, 2003). 
 Taxonomy of time in temporal database has been 
developed, concerning when a certain event occurs or 
when a certain fact is considered to be true (Elmasri and 
Navathe, 2000). The time aspect used in temporal 
database can be interpreted as the following: 
 
• User-defined time: Which is defined as the column 

that just happens to be of a date/time data type and 
does not indicate anything related to the validity of 
other columns (Snodgrass, 2000) 

• Temporal time: In which the column(s) that are of 
date/time data type are used to indicate time 
aspects of the associated tuple 

 
MATERIALS AND METHODS 

 
 The time models in temporal database systems can 
be categorized into the following: 
 
Valid-state time: In which the associated time, is used 
to indicate when certain fact (event) occur or when 
certain fact is considered to be true in the real world. 
Databases that support valid-time state is termed as 
historical database (Snodgrass, 2000). These databases 
can be represented as three dimensional database as 
shown below in Fig. 1. 

 
 
Fig. 1: Three dimensional views of valid-time relations 

(Snodgrass, 1987) 
 
 Valid-state time incorporated in relational database 
system to become temporal database by adding 
date/time column(s) into the relation with some 
granularity to indicate the validity of the desired fact 
which can be: 
 
• Point time event or fact: Which is typically 

associated in database with single time point in 
some granularity 

• Duration point or fact: It is associated with specific 
time period in some granularity 

 
 Valid-state time used in temporal database systems 
to model and record the history of the validity, several 
different applications prefer this kind for the flexibility 
that can be gained by recording and processing 
historical data which can categorized as: 
 
• Proactive update: It is applied to the database 

before it becomes effective in the real world 
• Retroactive update: The update is applied to the 

database after it became effective in the real 
world  

• Simultaneous update: An update that is applied at 
the same time when certain fact or event becomes 
effective in the real world 

 
Transaction-state time: The associated time refers to 
the time when the information was actually stored in 
the database. Transaction-state time is used in 
temporal database systems to model and record the 
history of changing state of the transaction-state 
database tables (Snodgrass, 2000). It is also called 
Rollback database. The data in transaction-time table 
is indexed by the transaction time, where the relation 
can be viewed as cubic to capture the time dimension 
as shown in Fig. 2.  



J. Computer Sci., 6 (3): 296-304, 2010 
 

298 

 
 
Fig. 2: Three dimensional views of transaction-time 

relations 
 
 Valid-state time and transaction-state time are 
considered to be the most common time models in 
temporal database, and they are referred to as time 
dimensions, in some applications only one of the 
dimensions is needed and in other cases both time 
dimensions are required, yielding to bitemporal-state 
time.  
 
Bitemporal-state time: Associated time refers to both 
Valid-state time and transaction-state time yield in 
bitemporal data model. Rollback database views tuples 
as begin valid at sometimes as of that time (Snodgrass, 
2000). Such database can be viewed conceptually as a 
collection of cubes, one at each transaction time as 
shown in Fig. 3.  
 
Data models for temporal database: Temporal 
database models and schemes have been discussed by 
Segev and Shoshani (1998); Delaney et al. (1992); 
Elmasri and Navathe (2000) and Gadia and Yeung 
(1988a). The various temporal features that characterize 
temporal data models are outlined, more explicitly, they 
concerned with: 
 
• The semantics of time representation (valid 

time/transaction time) 
• Whether timestamp is applied to a tuple or to 

individual attributes (tuple timestamp/attribute 
timestamp) 

• Whether attribute values are defined for the same 
or different time period in the same tuple 
(homogeneous tuple/heterogeneous tuple) (Gadia 
and Yeung, 1988a; 1988b) 

• Whether time is represented as points or intervals 
(single chronons/intervals/temporal elements) 

• 1NF or N1NF relations 

 
 
Fig. 3: Bitemporal relations 
 
Table 1: N1NF employee relation 
E-name Dept Ph. No. 
Bill {<[6/2004, 6/2005), loading>, {<[6/2004, 6/2005), 0598877>, 
 <[6/2005, now), sales>} <[6/2005, now), 0684477>} 
Pat {<[6/2003, 1/2005), loading>, {<[6/2000, 3/2005), 059878877>, 
 <[1/2006,now), research>} <[3/2005, now), 0684477>} 

 
 In addition to that, other concepts are used to 
describe the temporal data model, we can list them as 
the following: 
 
• The associated time or the time model can be either 

discrete or continues time model 
• The time model is bounded and finite, which 

means that there is start time and end time point to 
indicate the temporal aspect of the database object 

• A linear model of time means that only one version 
of data is available at any time  

 
 Linear time model as oppose to a branching model 
of time, the branching model of time allows alternative 
versions of data to hold at any given time. 
 So, discrete, bounded, finite and linear data model 
approach is used in modeling temporal database (Patel, 
2003) 
 In general, there are two main approaches for 
modeling temporal relational database Goralwalla et al. 
(1995) and Ahn and Snodgrass (1986). They are as 
follows: 
  
Attribute time stamp: The time is attached to attribute 
values of a relation and the histories of an attribute are 
included in a set of triplet-valued, as shown below in 
Table 1. 
 The triplet of the form <[l, u), v> means “l” 
represents lower time bound, “u” represents upper time 
bound and “v” represent the value of the attribute, this 



J. Computer Sci., 6 (3): 296-304, 2010 
 

299 

approach violates 1NF since it does not contain single 
or indivisible value, a temporal data model using nested 
relation is based on this approach which is discussed in 
(Garani, 2003). We saw in our research that this 
approach needs more work for query optimization, thus 
it is excluded from our study. 
 
Tuple time stamp: Where the time stamp can be one of 
the following: 
 
• Tuple Timestamp Single Relation (TTSR) that 

holds all its pertaining time varying attributes along 
with non-temporal attribute so time stamp is 
represented as two additional time attributes named 
“From” and “To” fields, this approach is not 
efficient since if a relation has many attributes, a 
whole new tuple version is created whenever any 
one of the attributes is updated. If the attributes are 
updated asynchronously, each new version may 
differ in only one of the attributes, thus needlessly 
repeating the other attribute values leading to hug 
space needed 

• Tuple Timestamp Multiple Relation (TTMR) 
where the temporal relation is decomposed as the 
following: 
• Time varying attributes are distributed over 

multiple relations and non-temporal attributes 
are gathered into separate relation 

 
 

RESULTS 
 
 Based on the two main approaches for modeling 
temporal relational DB discussed above we proposed a 
third data model, we named this model a Tuple 
Timestamp Historical Relation (TTHR) in which the 
relation that needs to capture temporal time aspects 
decomposed in two relations, one represents the current 
state relation and the other recodes the changes in all the 
time varying attributes. The approach is as the following: 
 
• Keeping non-temporal attribute and time-varying 

attribute in the original classical relation as it is and 
add additional date/time attribute to the relation 
according to the desired temporal type will be 
developed in some granularity, this relation will 
represent the current state of modeled reality, with 
the added date/time column to indicate the valid-
time DB, Transaction-time DB and Bi-temporal-
time DB, respectively, the absence of VET or TET 
in this relation will reduce the memory usage and 
these data can be extracted implicitly since this 
relation represents the current state 

 
 
Fig. 4: Temporal relational data model of employee 

relation 
 
• Creating new relation with these columns (1) 

key(s) attribute, (2) time-varying attribute name, 
(3) time-varying value, (4) timestamp start and (5) 
timestamp end. This relation will be referred to as 
sequenced changed table that will hold all the 
historical changes of all time-varying attribute 

 
Example: The employee relation Emp become 
temporal as shown in Fig. 4.  
 In Emp_VT relation, the field (Attr_Name) will 
hold the name of columns that have been changed and 
(Att_Value) field will store the changed value, this field 
size should be of the size of the largest field in the 
(Emp) of variant data type to hold the value of others 
temporal fields.  
 
Cost model: we introduce the cost of the memory 
usage when different temporal database models are 
used. Fortunately, the results with regards to performance 
of the different approaches for temporal database model 
are already available in (Goralwalla et al., 1995). 
Different queries that may cover most combinations of 
possible requirement were tested against TTMR and 
TTSR. The tests cover current status data and historical 
data, it has been found that TTMR surpass TTSR order 
of magnitudes in performance for both current status 
and historical data, with regards to execution time. But 
the comparison with regards to used memory is not 
available and carried out in this paper for TTMR and 
TTSR. We extend this comparison to include the 
proposed model. 
 
Definitions and axioms: 
Definition 1 (valid-time database relation): Valid-time 
database relation is a set of attributes that construct the 
relation and can be grouped into 4 subsets, key attributes, 
time-invariant attributes (s) (unchangeable), time-varying 
(changeable) attributes and timestamp attributes. They 
are represented by K, U, C and T respectively, so: 
 
R = {{A K1, AK2, …, AKn}, {A U1, AU2, …, AUn}, {A C1, 

AC2, …, ACn}, {A T1, AT2}} 
 
Where: 
AK = {A K1, AK2, AK3, …, AKn} 



J. Computer Sci., 6 (3): 296-304, 2010 
 

300 

AU = {A U1, AU2, …, AUn} 
AC = {A C1, AC2, …, ACn} 
AT = {A T1, AT2} 
R = {AK, AU, AC, AT} 
 
Definition 2 (time-invariant attribute): Time-
invariant attribute is an attribute whose values are not 
changed with a time, Time-invariant attributes can be 
updated as in the case of an error, but a database does 
not keep a history of it. 
 
Definition 3 (time-varying attribute): Time-varying 
attribute is an attribute whose values are associated with 
timestamps.  
 
Definition 4 (timestamp): A timestamp is a time value 
associated with a Time-stamped object (i.e., an attribute 
value or tuple). 
 
Definition 5 (lifespan): The lifespan of a database 
objects is the time through which the object is defined. 
 
Definition 6 (frequency of time-varying attribute): is 
the number of times this attribute to be updated 
(changed) within a specific interval of time. 
 F(ACi): Frequency of times ACi changing within an 
interval of time where i in (1……Cn) 
 
Definition 7 (S(Aji) ): Size of field/attribute Aji in bytes 
where j in {K,U,C,T} and i in (1, 2, 3,…, n). 
 
Definition 8 Cost (Aj): The cost of a subset Aj, which 
is the summation of all attributes size in Aj in bytes 
where j in {K, U, C, T}. 
 
Definition 9  Cost(r):  The  cost  of  a  tuple  (row) r 
in R is the summation  of  all the cost of subsets 
attributes = Cost(Ak)+Cost(Au)+Cost(Ac)+Cost(AT). 
 
Axioms 1: The cost of different attribute type is defined 
as: 
 

Kn

K Ki
i 1

Cost(A ) S(A ) K byte
=

= =∑  (1) 

 
Un

U Ui
i 1

Cost(A ) S(A ) U byte
=

= =∑  (2) 

 
Cn

C Ci
i 1

Cost(A ) S(A ) C byte
=

= =∑  (3) 

 
2

T Ti
i 1

Cost(A ) S(A ) T byte
=

= =∑  (4) 

Axioms 2: 
 

Cn

C Ci
i 1

F(A ) F(A ) times
=

= = δ∑  (5) 

 
in interval of time = λ say 3 months, 6 months, one 
year, or two years, or any interval of time depends on 
the nature of the developed system. 
 The frequency of changing of the time-varying 
attribute (AC) in interval of time λ can be calculated as: 
 
Calculation of memory cost needed for different 
models: In comparison with regards to used memory in 
different model a fixed length not spanning records for 
the database file structure design is assumed to be 
applied in our study. Time stamps are represented in 
“VST” and “VET” i.e., we will take valid-time model 
for representing temporal database. 
 
TTSR model: 
 
TTSR relation: 
AK1…AKn AU1…AUn AC1…ACn AT1,AT2 
 
 The cost of representing one row can be calculated 
as: 
 
Cost(r) = Cost(AK)+Cost(AU)+Cost(AC)+Cost(AT) 
 = K+U+C+T byte as formulas above 1-4  
 
 The cost of representing history data of one row 
with F(AC) = δ(delta) times in λ(lamda) interval of time 
is: 
 
 = (K+U+C+T)*δ (6) 
 
 Since each changing in any AC require insert new 
row with all attributes. 
 
TTHR model (proposed):  
 
TTHR-snapshot relation: 
AK1…AKn AU1…AUn AC1…ACn AT1 

 
TTHR-history relation: 
AK1…AKn Index α AT 

 
 The cost of representing one row can be calculated 
as: 

 
Cost(r) = Cost(AK)+Cost(AU)+Cost(AC)+Cost(AT1) 
 = K+U+C+T/2 byte as formulas above 1-4  



J. Computer Sci., 6 (3): 296-304, 2010 
 

301 

 The cost of representing the history data of one row 
with: 

 
F(AC) = δ times in λ interval of time is: 
 = (K+index+α+T)*δ 
 = (K+1+α +T)*δ (7) 

 
Where: 
Index = New attribute to index the time-varying 

attributes with one bye size  
α = New added attribute of variant data type to 

hold data from different type, it’s size assumed 
to be as the size of the largest field size in AC 

 
 Since each changing in any AC requires inserting 
new row in the second relation for the old value of the 
effected (changed) time-varying attributes, the total 
saves in memory (space) for TTHR over TTSR for a 
certain interval of time δ can be calculated as the 
following: 

 
Cost(TTSR) = (K+U+C+T)*δ as in 6 

 
Cost(TTHR) = (K+1+α +T)*δ as in 7 

 
( )
( ) ( )

( )
( ) ( )

( )
( )

Cost improvement  

Cost TTSR Cost TTHR

Cost TTSR

K U C T * K 1 T *

K U C T *

U C – 1

K U C T

=

−
=

+ + + δ − + + α + δ
=

+ + + δ

+ + α
+ + +

 

  
as (1+ α) represent small value so: 

 

( ) U C
Cost improvement

K U C T

+≈
+ + +

 

 
 In case α → C the improvement will be: 
 

U

K U C T
≈

+ + +
 

 
 The save in memory would be directly proportional 
to δ and to the number and size of attributes in C set. 
 
TTMR model: 
 
TTMR-non-temporal relation: 
AK1…AKn AU1…AUn 

TTMR- AC1 relation: 
AK1…AKn AC1 AT 
 
TTMR- AC2 relation: 
AK1…AKn AC2 AT 
 
TTMR- AC3 relation: 
AK1…AKn AC3 AT 
TTMR-ACn relation: 
AK1…AKn ACn AT 
 
 The cost of represent one row can be calculated as: 
  

Cn

Ci
i 1

Cost(r) K U (S(A ) K U)
=

= + + + +∑  (8) 

 
 The cost of representing history data of one row 
with F(AC) = δ times in λ interval of time with:  
 

Cn

Ci
i 1

Cost(r) (S(A ) K U) * i
=

= + + δ∑  (9) 

 
where, δi is the number of times ACi may be updated in 
interval of time = λ. 
        Since each changing in any ACi require insert new 
row in the ACi relation for the new value of the effected 
(changed) time-varying attributes. 
 The total save in memory (space) for TTMR over 
TTSR for a certain interval of time δ can be calculated 
as the following: 
 

Cost(TTSR) = (K+U+C+T)*δ as in 6 

 
Cn

Ci
i 1

Cost(TTMR) (S(A ) K U) * i as in 9
=

= + + δ∑  

 

( )
( ) ( )

( )

( )
( )

Cn

Ci
i 1

Cost improvement

Cost TTSR C TTHR

Cost TTSR

K U C T * (S(A ) K U) * i

K U C T *
=

=

−
=

+ + + δ − + + δ

+ + + δ

∑

 

 
 The cost of each ACi and δ of each ACi should be 
known to calculate the Cost improvement. But by 
experiment we found that the memory save 
improvement in this model over TTSR range from 20-
71% and several parameters may affect the 
improvement like number of AC set and δ where the 
saving in space may exceed 100% with much higher δ. 



J. Computer Sci., 6 (3): 296-304, 2010 
 

302 

 

 
 
Fig. 5: The memory saves of TTMR and TTHR over 

TTSR (Experiment 1) 
 

 
 
Fig. 6: The memory saves of TTMR and TTHR over 

TTSR (Experiment 2) 
 
 Using this model for representing temporal 
database model satisfied memory save but in contrast, it 
costs too much in query. Since decomposing the 
relation in to Cn relations and combine information 
from separate relations, temporal intersection join 
would be needed, which is generally expensive to 
implement.  
 Detailed evaluations for different temporal 
databases are discussed by (Ahn and Snodgrass, 1986). 
We carried out the experiment several times with 
varying the cost of AC and freezing δ to make it equal 
19 and 25. 

 
 
Fig. 7: The memory saves of TTMR and TTHR over 

TTSR (Experiment 3) 

 
Experiment 1: As shown in the table below the graph, 
we got the results as shown in the graph in Fig. 5. 
 Improving the memory usage in TTMR or in 
TTHR depends on δ and the cost of AC as seen in Fig. 5 
we do the experiment by freezing the F(ACi) at 19 and 
varying AC from 10-100 bytes. 

 
Experiment 2: In Fig. 6 we do the experiment by 
freezing the F(ACi)  at  19  and  varying  AC from 13-
80 byte, but with different values of Experiment 1. We 
can conclude that the proposed temporal data model 
achieves memory space save that is roughly equal or 
greater than that in TTMR and in our case study we 
preferred to use TTHR for its simplicity.  

 
Experiment 3: In Fig. 7 we do the experiment by 
freezing the F(ACi) at 25 and  varying AC from 10-100 
bytes, we got the same result as in Experiment 1. 

 
DISCUSSION 

 
 There are two basic approaches in developing 
temporal database application, the first one is an 
integrated approach where the internal models of 
DBMS are modified or extended to support time-
varying aspects of data, and the second approach would 
be the stratum approach in which a layer over DBMS 
converts temporal statements in to conventional DBMS 
and converts the result from the DBMS to be in the 
temporal form. While the first approach ensures the 



J. Computer Sci., 6 (3): 296-304, 2010 
 

303 

maximum efficiency, the second approach is more 
realistic and more popular. Wang et al. (2006) proposed 
transaction-time extensions for database systems that 
require no modification of the existing standards of 
database using XML. Where, XML provides excellent 
support for temporally grouped data models, which 
have long been advocated as the most natural and 
effective representations of temporal information. 
 Anyi (2006) adopted a practitioner’s approach for 
compute temporal aggregation and temporal universal 
quantification in standard SQL (not-temporal SQL). 
This provides a solution for users that need such time-
varying facilities in their applications. Which are based 
on DBMS’s that do not support time-varying facilities 
Snodgrass (2000) in his book “Developing Time-
Oriented Database Applications on SQL’ covered the 
different aspect of temporal database and proposed a 
technique for developing this kind of application on 
different DBMS using a set of assertions or triggers to 
satisfy the temporal aspects, features and constrains. 
 

CONCLUSION 
 
 We have proposed a data model for the temporal 
database based on the data models which are discussed 
in (Gregersen and Jensen, 1998; Segev and Shoshani, 
1998; Ahn and Snodgrass, 1986). Tests in (Ahn and 
Snodgrass, 1986) have shown that tuple time stamping 
temporal data model that involves multiple relations for 
every time-varying attributes have a better overall 
performance and efficiency in both the processing time 
and used space. Our proposed data model is based on 
tuple time stamping with two relations, one relation is 
for the current snapshot data and the other one is the 
auxiliary relation that holds the temporal aspects of 
whole time-varying attributes, the proposed temporal 
data model achieves saving in memory usage range 
from 70-90% over the temporal data model discussed in 
(Novikov and Gorshkova, 2008), where a framework 
for temporal database implementation is discussed. 

 
REFERENCES 

 
Ahn, I. and R. Snodgrass, 1986. Performance 

evaluation of a temporal database management 
system. Proceedings of the 1986 ACM SIGMOD 
International Conference Management of Data, 
May 28-30, ACM Press, Washington DC., United 
States, pp: 96-107. DOI: 10.1145/16894.16864 

Anyi, E., 2006. Temporal aggregates and temporal 
universal quantification in standard SQL. ACM 
SIGMOD Rec., 35: 16-21. 

Delaney, C., D. Rama and P. Srinivasan, 1992. Design 
of a temporal database for phlebitis. Proceedings of 
the 1992, ACM/SIGAPP Symposium on Applied 
Computing: Technological Challenges of the 
1990's, (ACTA’92), ACM Press, Kansas City, 
Missouri, United States, pp: 204-209. DOI: 
10.1145/143559.143642  

Elmasri, R. and Navathe, 2000. Fundamentals of 
Database Systems. 3rd Edn., Addison Wesley, 
USA., ISBN: 0-201-54263-3, pp: 744-754. 

Gadia, S. and C. Yeung, 1988a. A generalized model 
for a relational temporal database. Proceedings of 
the 1988 ACM SIGMOD International Conference 
on Management of data, June 1-3, ACM Press, 
Chicago, Illinois, United States, pp: 251-259. DOI: 
10.1145/50202.50233 

Gadia, S., 1988b. Homogeneous relational model and 
query languages for temporal databases. ACM 
Trans. Database Syst. 13: 418-448. 

Garani, G., 2003. A temporal database model using 
nested relations. Doctor of Philosophy in the 
University of London, School of Computer Science 
and Information Systems, Birkbeck College, UK, 
http://www.dcs.bbk.ac.uk/research/recentphds/gara
ni.pdf  

Goralwalla, I., A. Tansel and M. Ozsu, 1995. 
Experimenting with temporal relational databases. 
Conference on Information and Knowledge 
Management, Proceedings of the fourth 
International Conference on Information and 
Knowledge Management, Nov. 29- Dec. 2, ACM 
Press, Baltimore, Maryland, United States, pp: 
296-303. DOI: 10.1145/221270.221597 

Gregersen, H. and C. Jensen, 1998. Conceptual 
modeling of time-varying information. Department 
of Computer Science, Aalborg University, 
http://www.cs.aau.dk/~csj/ Thesis/pdf/chapter32.pdf 

Kostenko, B., 2007. Temporal preprocessor: Towards 
temporal applications development. Proceedings of 
SYRCODIS’07, the 4th Spring Young Researchers 
Colloquium on Databases and Information 
Systems, June 21-21, CEUR-WS.org, Moscow, 
Russia, pp: 1-3. 

       http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-
WS/Vol-256/submission_14.pdf   

Novikov, B. and E. Gorshkova, 2008. Temporal 
databases: From theory to applications. Programm. 
Comput. Software, 34: 1-6.  

Patel, J., 2003. Temporal Database System Individual 
Project. Department of Computing, Imperial 
College, University of London, Individual Project. 
http://www.doc.ic.ac.uk/~pjm/teaching/student_pro
jects/ jaymin_patel.pdf 



J. Computer Sci., 6 (3): 296-304, 2010 
 

304 

Segev, A. and A. Shoshani, 1998. Functionality of 
temporal data models and physical design 
implementations. IEEE Database Eng., 11: 38-45. 

Snodgrass, R., 1987. query language TQuel. ACM 
Trans. Database Syst., 13: 418-448.  

Snodgrass, R., 2000. Developing Time-Oriented 
Database Applications in SQL. 1st Edn., Morgan 
Kaufmann Publishers, Inc., San Francisco, pp: 504. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Wang, F., X. Zhou and C. Zaniolo, 2006. Using XML 
to build efficient transaction-time temporal 
database systems on relational databases. 
Proceedings of the 22nd International Conference 
on Data Engineering, Apr. 3-7, IEEE Computer 
Society, Washington DC., USA., pp: 131. DOI: 
10.1109/ICDE.2006.168 


